Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 28 Jun 2020]
Title:A lateral semicircular canal segmentation based geometric calibration for human temporal bone CT Image
View PDFAbstract:Computed Tomography (CT) of the temporal bone has become an important method for diagnosing ear diseases. Due to the different posture of the subject and the settings of CT scanners, the CT image of the human temporal bone should be geometrically calibrated to ensure the symmetry of the bilateral anatomical structure. Manual calibration is a time-consuming task for radiologists and an important pre-processing step for further computer-aided CT analysis. We propose an automatic calibration algorithm for temporal bone CT images. The lateral semicircular canals (LSCs) are segmented as anchors at first. Then, we define a standard 3D coordinate system. The key step is the LSC segmentation. We design a novel 3D LSC segmentation encoder-decoder network, which introduces a 3D dilated convolution and a multi-pooling scheme for feature fusion in the encoding stage. The experimental results show that our LSC segmentation network achieved a higher segmentation accuracy. Our proposed method can help to perform calibration of temporal bone CT images efficiently.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.