Mathematics > Numerical Analysis
[Submitted on 28 Aug 2020 (v1), last revised 22 Sep 2020 (this version, v2)]
Title:Distributed-memory $\mathcal{H}$-matrix Algebra I: Data Distribution and Matrix-vector Multiplication
View PDFAbstract:We introduce a data distribution scheme for $\mathcal{H}$-matrices and a distributed-memory algorithm for $\mathcal{H}$-matrix-vector multiplication. Our data distribution scheme avoids an expensive $\Omega(P^2)$ scheduling procedure used in previous work, where $P$ is the number of processes, while data balancing is well-preserved. Based on the data distribution, our distributed-memory algorithm evenly distributes all computations among $P$ processes and adopts a novel tree-communication algorithm to reduce the latency cost. The overall complexity of our algorithm is $O\Big(\frac{N \log N}{P} + \alpha \log P + \beta \log^2 P \Big)$ for $\mathcal{H}$-matrices under weak admissibility condition, where $N$ is the matrix size, $\alpha$ denotes the latency, and $\beta$ denotes the inverse bandwidth. Numerically, our algorithm is applied to address both two- and three-dimensional problems of various sizes among various numbers of processes. On thousands of processes, good parallel efficiency is still observed.
Submission history
From: Yingzhou Li [view email][v1] Fri, 28 Aug 2020 02:18:59 UTC (81 KB)
[v2] Tue, 22 Sep 2020 06:09:25 UTC (81 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.