Condensed Matter > Superconductivity
[Submitted on 6 Oct 2020]
Title:Extracting correlation effects from Momentum-Resolved Electron Energy Loss Spectroscopy (M-EELS): Synergistic origin of the dispersion kink in Bi$_{2.1}$Sr$_{1.9}$CaCu$_2$O$_{8+x}$
View PDFAbstract:We employ Momentum-Resolved Electron Energy Loss Spectroscopy (M-EELS) on Bi2.1Sr1.9CaCu2O8+x to resolve the issue of the kink feature in the electron dispersion widely observed in the cuprates. To this end, we utilize the GW approximation to relate the density response function measured in in M-EELS to the self-energy, isolating contributions from phonons, electrons, and the momentum dependence of the effective interaction to the decay rates. The phononic contributions, present in the M-EELS spectra due to electron-phonon coupling, lead to kink features in the corresponding single-particle spectra at energies between 40 meV and 80 meV, independent of the doping level. We find that a repulsive interaction constant in momentum space is able to yield the kink attributed to phonons in ARPES. Hence, our analysis of the M-EELS spectra points to local repulsive interactions as a factor that enhances the spectroscopic signatures of electron-phonon coupling in cuprates. We conclude that the strength of the kink feature in cuprates is determined by the combined action of electron-phonon coupling and electron-electron interactions.
Current browse context:
cond-mat.supr-con
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.