Computer Science > Computation and Language
[Submitted on 23 Dec 2020 (v1), last revised 24 Dec 2020 (this version, v2)]
Title:A Multimodal Framework for the Detection of Hateful Memes
View PDFAbstract:An increasingly common expression of online hate speech is multimodal in nature and comes in the form of memes. Designing systems to automatically detect hateful content is of paramount importance if we are to mitigate its undesirable effects on the society at large. The detection of multimodal hate speech is an intrinsically difficult and open problem: memes convey a message using both images and text and, hence, require multimodal reasoning and joint visual and language understanding. In this work, we seek to advance this line of research and develop a multimodal framework for the detection of hateful memes. We improve the performance of existing multimodal approaches beyond simple fine-tuning and, among others, show the effectiveness of upsampling of contrastive examples to encourage multimodality and ensemble learning based on cross-validation to improve robustness. We furthermore analyze model misclassifications and discuss a number of hypothesis-driven augmentations and their effects on performance, presenting important implications for future research in the field. Our best approach comprises an ensemble of UNITER-based models and achieves an AUROC score of 80.53, placing us 4th on phase 2 of the 2020 Hateful Memes Challenge organized by Facebook.
Submission history
From: Nithin Holla [view email][v1] Wed, 23 Dec 2020 18:37:11 UTC (4,822 KB)
[v2] Thu, 24 Dec 2020 14:28:17 UTC (4,822 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.