Computer Science > Artificial Intelligence
[Submitted on 22 Feb 2021]
Title:Distributed Application of Guideline-Based Decision Support through Mobile Devices: Implementation and Evaluation
View PDFAbstract:Traditionally Guideline(GL)based Decision Support Systems (DSSs) use a centralized infrastructure to generate recommendations to care providers. However, managing patients at home is preferable, reducing costs and empowering patients. We aimed to design, implement, and demonstrate the feasibility of a new architecture for a distributed DSS that provides patients with personalized, context-sensitive, evidence based guidance through their mobile device, and increases the robustness of the distributed application of the GL, while maintaining access to the patient longitudinal record and to an up to date evidence based GL repository. We have designed and implemented a novel projection and callback (PCB) model, in which small portions of the evidence based GL procedural knowledge, adapted to the patient preferences and to their current context, are projected from a central DSS server, to a local DSS on the patient mobile device that applies that knowledge. When appropriate, as defined by a temporal pattern within the projected plan, the local DSS calls back the central DSS, requesting further assistance, possibly another projection. Thus, the GL specification includes two levels: one for the central DSS, one for the local DSS. We successfully evaluated the PCB model within the MobiGuide EU project by managing Gestational Diabetes Mellitus patients in Spain, and Atrial Fibrillation patients in Italy. Significant differences exist between the two GL representations, suggesting additional ways to characterize GLs. Mean time between the central and local interactions was quite different for the two GLs: 3.95 days for gestational diabetes, 23.80 days for atrial fibrillation. Most interactions, 83%, were due to projections to the mDSS. Others were data notifications, mostly to change context. Robustness was demonstrated through successful recovery from multiple local DSS crashes.
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.