Quantum Physics
[Submitted on 3 Apr 2021]
Title:Characterization of Er$^{3+}$:YVO$_{4}$ for microwave to optical transduction
View PDFAbstract:Quantum transduction between microwave and optical frequencies is important for connecting superconducting quantum platforms in a quantum network. Ensembles of rare-earth ions are promising candidates to achieve this conversion due to their collective coherent properties at microwave and optical frequencies. Erbium ions are of particular interest because of their telecom wavelength optical transitions that are compatible with fiber communication networks. Here, we report the optical and electron spin properties of erbium doped yttrium orthovanadate (Er$^{3+}$:YVO$_{4}$), including high-resolution optical spectroscopy, electron paramagnetic resonance studies and an initial demonstration of microwave to optical conversion of classical fields. The highly absorptive optical transitions and narrow ensemble linewidths make Er$^{3+}$:YVO$_{4}$ promising for magneto-optic quantum transduction.
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.