Computer Science > Machine Learning
[Submitted on 20 Jul 2021 (v1), last revised 21 Jul 2021 (this version, v2)]
Title:Toward Collaborative Reinforcement Learning Agents that Communicate Through Text-Based Natural Language
View PDFAbstract:Communication between agents in collaborative multi-agent settings is in general implicit or a direct data stream. This paper considers text-based natural language as a novel form of communication between multiple agents trained with reinforcement learning. This could be considered first steps toward a truly autonomous communication without the need to define a limited set of instructions, and natural collaboration between humans and robots. Inspired by the game of Blind Leads, we propose an environment where one agent uses natural language instructions to guide another through a maze. We test the ability of reinforcement learning agents to effectively communicate through discrete word-level symbols and show that the agents are able to sufficiently communicate through natural language with a limited vocabulary. Although the communication is not always perfect English, the agents are still able to navigate the maze. We achieve a BLEU score of 0.85, which is an improvement of 0.61 over randomly generated sequences while maintaining a 100% maze completion rate. This is a 3.5 times the performance of the random baseline using our reference set.
Submission history
From: Kevin Eloff [view email][v1] Tue, 20 Jul 2021 09:19:29 UTC (518 KB)
[v2] Wed, 21 Jul 2021 13:28:31 UTC (519 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.