Computer Science > Computation and Language
[Submitted on 3 Sep 2021]
Title:An Open-Source Dataset and A Multi-Task Model for Malay Named Entity Recognition
View PDFAbstract:Named entity recognition (NER) is a fundamental task of natural language processing (NLP). However, most state-of-the-art research is mainly oriented to high-resource languages such as English and has not been widely applied to low-resource languages. In Malay language, relevant NER resources are limited. In this work, we propose a dataset construction framework, which is based on labeled datasets of homologous languages and iterative optimization, to build a Malay NER dataset (MYNER) comprising 28,991 sentences (over 384 thousand tokens). Additionally, to better integrate boundary information for NER, we propose a multi-task (MT) model with a bidirectional revision (Bi-revision) mechanism for Malay NER task. Specifically, an auxiliary task, boundary detection, is introduced to improve NER training in both explicit and implicit ways. Furthermore, a gated ignoring mechanism is proposed to conduct conditional label transfer and alleviate error propagation by the auxiliary task. Experimental results demonstrate that our model achieves comparable results over baselines on MYNER. The dataset and the model in this paper would be publicly released as a benchmark dataset.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.