Condensed Matter > Materials Science
[Submitted on 6 Nov 2021]
Title:Dzyaloshinskii-Moriya Interaction-Induced Magnetoelectric Coupling in a tetrahedral Molecular Spin-Frustrated System
View PDFAbstract:We have investigated magnetoelectric coupling in the single-molecule magnet $\mathrm{Mn}_{4}\mathrm{Te}_{4}(\mathrm{P}\mathrm{Et}_{3})_{4}$ with tetrahedral spin frustration. Our density functional studies found that an electric dipole moment can emerge with various non-collinear spin orderings. The forms of spin-dependent dipole are determined and consistent with that in non-centrosymmetric magnets driven by the Dzyaloshinskii-Moriya interaction. Writing a parameterized spin Hamiltonian, after solving for eigenvalues and eigenstates we quantified the magnetoelectric coupling by calculating the thermal average of the electric and magnetic susceptibilities, which can be influenced by external magnetic and electric fields, respectively. The quadratic relations are expected to be observable in experiments.
Current browse context:
cond-mat.mtrl-sci
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.