Physics > Optics
[Submitted on 7 Dec 2021]
Title:An interferometric method to estimate the eigenvalues of a Non-Hermitian two-level optical system
View PDFAbstract:Non-Hermitian physics has found a fertile ground in optics. Recently, the study of mode degeneracies, i.e. exceptional points, has led to the discovery of intriguing and counterintuitive phenomena. Degeneracies are typically modeled through the coupled mode theory to determine the behaviour of eigenstates and eigenvalues. However, the complex nature of the eigenvalues makes hard their direct characterization from the response spectrum. Here, we demonstrate that a coherent interferometric excitation allows estimating both the real and imaginary parts of the eigenvalues. We studied the clockwise and counter-clockwise modes in an optical microresonators both in the case of Hermitian and non-Hermitian intermodal coupling. We show the conditions by which a resonant doublet, due to the dissipative coupling of counter-propagating modes caused by surface roughness backscattering, merges to a single Lorentzian. This permits to estimate the optimal quality factor of the microresonator in the absence of modal coupling caused by backscattering. Furthermore, we demonstrate that a taiji microresonator working at an exceptional point shows a degeneracy splitting only in one propagation direction and not in the other. This follows from the strongly non-Hermitian intermodal coupling caused by the inner S-shaped waveguide.
Current browse context:
physics.optics
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.