Computer Science > Machine Learning
[Submitted on 10 Dec 2021]
Title:A Self-supervised Mixed-curvature Graph Neural Network
View PDFAbstract:Graph representation learning received increasing attentions in recent years. Most of existing methods ignore the complexity of the graph structures and restrict graphs in a single constant-curvature representation space, which is only suitable to particular kinds of graph structure indeed. Additionally, these methods follow the supervised or semi-supervised learning paradigm, and thereby notably limit their deployment on the unlabeled graphs in real applications. To address these aforementioned limitations, we take the first attempt to study the self-supervised graph representation learning in the mixed-curvature spaces. In this paper, we present a novel Self-supervised Mixed-curvature Graph Neural Network (SelfMGNN). Instead of working on one single constant-curvature space, we construct a mixed-curvature space via the Cartesian product of multiple Riemannian component spaces and design hierarchical attention mechanisms for learning and fusing the representations across these component spaces. To enable the self-supervisd learning, we propose a novel dual contrastive approach. The mixed-curvature Riemannian space actually provides multiple Riemannian views for the contrastive learning. We introduce a Riemannian projector to reveal these views, and utilize a well-designed Riemannian discriminator for the single-view and cross-view contrastive learning within and across the Riemannian views. Finally, extensive experiments show that SelfMGNN captures the complicated graph structures in reality and outperforms state-of-the-art baselines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.