Mathematics > Optimization and Control
[Submitted on 27 Jan 2022 (v1), last revised 26 Apr 2023 (this version, v4)]
Title:Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the $O(ε^{-7/4})$ Complexity
View PDFAbstract:This paper studies accelerated gradient methods for nonconvex optimization with Lipschitz continuous gradient and Hessian. We propose two simple accelerated gradient methods, restarted accelerated gradient descent (AGD) and restarted heavy ball (HB) method, and establish that our methods achieve an $\epsilon$-approximate first-order stationary point within $O(\epsilon^{-7/4})$ number of gradient evaluations by elementary proofs. Theoretically, our complexity does not hide any polylogarithmic factors, and thus it improves over the best known one by the $O(\log\frac{1}{\epsilon})$ factor. Our algorithms are simple in the sense that they only consist of Nesterov's classical AGD or Polyak's HB iterations, as well as a restart mechanism. They do not invoke negative curvature exploitation or minimization of regularized surrogate functions as the subroutines. In contrast with existing analysis, our elementary proofs use less advanced techniques and do not invoke the analysis of strongly convex AGD or HB.
Code is avaliable at this https URL.
Submission history
From: Huan Li [view email][v1] Thu, 27 Jan 2022 10:04:04 UTC (192 KB)
[v2] Wed, 16 Feb 2022 07:10:04 UTC (171 KB)
[v3] Mon, 16 May 2022 03:04:11 UTC (536 KB)
[v4] Wed, 26 Apr 2023 02:17:13 UTC (2,732 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.