Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Mar 2022 (v1), last revised 26 May 2022 (this version, v3)]
Title:Decontextualized I3D ConvNet for ultra-distance runners performance analysis at a glance
View PDFAbstract:In May 2021, the site this http URL published that participation in ultra-distance races has increased by 1,676% in the last 23 years. Moreover, nearly 41% of those runners participate in more than one race per year. The development of wearable devices has undoubtedly contributed to motivating participants by providing performance measures in real-time. However, we believe there is room for improvement, particularly from the organizers point of view. This work aims to determine how the runners performance can be quantified and predicted by considering a non-invasive technique focusing on the ultra-running scenario. In this sense, participants are captured when they pass through a set of locations placed along the race track. Each footage is considered an input to an I3D ConvNet to extract the participant's running gait in our work. Furthermore, weather and illumination capture conditions or occlusions may affect these footages due to the race staff and other runners. To address this challenging task, we have tracked and codified the participant's running gait at some RPs and removed the context intending to ensure a runner-of-interest proper evaluation. The evaluation suggests that the features extracted by an I3D ConvNet provide enough information to estimate the participant's performance along the different race tracks.
Submission history
From: David Freire-Obregón [view email][v1] Sun, 13 Mar 2022 20:11:10 UTC (3,921 KB)
[v2] Fri, 25 Mar 2022 16:55:40 UTC (3,921 KB)
[v3] Thu, 26 May 2022 10:24:49 UTC (3,921 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.