Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 17 Mar 2022]
Title:Benchmarking a Proof-of-Concept Performance Portable SYCL-based Fast Fourier Transformation Library
View PDFAbstract:In this paper, we present an early version of a SYCL-based FFT library, capable of running on all major vendor hardware, including CPUs and GPUs from AMD, ARM, Intel and NVIDIA. Although preliminary, the aim of this work is to seed further developments for a rich set of features for calculating FFTs. It has the advantage over existing portable FFT libraries in that it is single-source, and therefore removes the complexities that arise due to abundant use of pre-process macros and auto-generated kernels to target different architectures. We exercise two SYCL-enabled compilers, Codeplay ComputeCpp and Intel's open-source LLVM project, to evaluate performance portability of our SYCL-based FFT on various heterogeneous architectures. The current limitations of our library is it supports single-dimension FFTs up to $2^{11}$ in length and base-2 input sequences. We compare our results with highly optimized vendor specific FFT libraries and provide a detailed analysis to demonstrate a fair level of performance, as well as potential sources of performance bottlenecks.
Submission history
From: Vincent Richard Pascuzzi [view email][v1] Thu, 17 Mar 2022 15:20:56 UTC (791 KB)
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.