Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Mar 2022]
Title:Transformer-based HTR for Historical Documents
View PDFAbstract:We apply the TrOCR framework to real-world, historical manuscripts and show that TrOCR per se is a strong model, ideal for transfer learning. TrOCR has been trained on English only, but it can adapt to other languages that use the Latin alphabet fairly easily and with little training material. We compare TrOCR against a SOTA HTR framework (Transkribus) and show that it can beat such systems. This finding is essential since Transkribus performs best when it has access to baseline information, which is not needed at all to fine-tune TrOCR.
Submission history
From: Phillip Benjamin Ströbel [view email][v1] Mon, 21 Mar 2022 14:23:10 UTC (1,746 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.