Computer Science > Information Theory
[Submitted on 24 Mar 2022 (v1), last revised 8 Sep 2022 (this version, v3)]
Title:SwiftAgg+: Achieving Asymptotically Optimal Communication Loads in Secure Aggregation for Federated Learning
View PDFAbstract:We propose SwiftAgg+, a novel secure aggregation protocol for federated learning systems, where a central server aggregates local models of $N \in \mathbb{N}$ distributed users, each of size $L \in \mathbb{N}$, trained on their local data, in a privacy-preserving manner. SwiftAgg+ can significantly reduce the communication overheads without any compromise on security, and achieve optimal communication loads within diminishing gaps. Specifically, in presence of at most $D=o(N)$ dropout users, SwiftAgg+ achieves a per-user communication load of $(1+\mathcal{O}(\frac{1}{N}))L$ symbols and a server communication load of $(1+\mathcal{O}(\frac{1}{N}))L$ symbols, with a worst-case information-theoretic security guarantee, against any subset of up to $T=o(N)$ semi-honest users who may also collude with the curious server. Moreover, the proposed SwiftAgg+ allows for a flexible trade-off between communication loads and the number of active communication links. In particular, for $T<N-D$ and for any $K\in\mathbb{N}$, SwiftAgg+ can achieve the server communication load of $(1+\frac{T}{K})L$ symbols, and per-user communication load of up to $(1+\frac{T+D}{K})L$ symbols, where the number of pair-wise active connections in the network is $\frac{N}{2}(K+T+D+1)$.
Submission history
From: Tayyebeh Jahani-Nezhad [view email][v1] Thu, 24 Mar 2022 13:12:23 UTC (55 KB)
[v2] Thu, 28 Apr 2022 13:26:29 UTC (126 KB)
[v3] Thu, 8 Sep 2022 08:14:17 UTC (128 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.