Computer Science > Cryptography and Security
[Submitted on 31 Mar 2022 (v1), last revised 6 Oct 2022 (this version, v2)]
Title:Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
View PDFAbstract:We introduce a new class of attacks on machine learning models. We show that an adversary who can poison a training dataset can cause models trained on this dataset to leak significant private details of training points belonging to other parties. Our active inference attacks connect two independent lines of work targeting the integrity and privacy of machine learning training data.
Our attacks are effective across membership inference, attribute inference, and data extraction. For example, our targeted attacks can poison <0.1% of the training dataset to boost the performance of inference attacks by 1 to 2 orders of magnitude. Further, an adversary who controls a significant fraction of the training data (e.g., 50%) can launch untargeted attacks that enable 8x more precise inference on all other users' otherwise-private data points.
Our results cast doubts on the relevance of cryptographic privacy guarantees in multiparty computation protocols for machine learning, if parties can arbitrarily select their share of training data.
Submission history
From: Florian Tramèr [view email][v1] Thu, 31 Mar 2022 18:06:28 UTC (8,637 KB)
[v2] Thu, 6 Oct 2022 16:27:36 UTC (30,756 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.