Computer Science > Data Structures and Algorithms
[Submitted on 12 Apr 2022]
Title:PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections
View PDFAbstract:Many modern programming languages are shifting toward a functional style for collection interfaces such as sets, maps, and sequences. Functional interfaces offer many advantages, including being safe for parallelism and providing simple and lightweight snapshots. However, existing high-performance functional interfaces such as PAM, which are based on balanced purely-functional trees, incur large space overheads for large-scale data analysis due to storing every element in a separate node in a tree.
This paper presents PaC-trees, a purely-functional data structure supporting functional interfaces for sets, maps, and sequences that provides a significant reduction in space over existing approaches. A PaC-tree is a balanced binary search tree which blocks the leaves and compresses the blocks using arrays. We provide novel techniques for compressing and uncompressing the blocks which yield practical parallel functional algorithms for a broad set of operations on PaC-trees such as union, intersection, filter, reduction, and range queries which are both theoretically and practically efficient.
Using PaC-trees we designed CPAM, a C++ library that implements the full functionality of PAM, while offering significant extra functionality for compression. CPAM consistently matches or outperforms PAM on a set of microbenchmarks on sets, maps, and sequences while using about a quarter of the space. On applications including inverted indices, 2D range queries, and 1D interval queries, CPAM is competitive with or faster than PAM, while using 2.1--7.8x less space. For static and streaming graph processing, CPAM offers 1.6x faster batch updates while using 1.3--2.6x less space than the state-of-the-art graph processing system Aspen.
Submission history
From: Laxman Dhulipala [view email][v1] Tue, 12 Apr 2022 20:40:15 UTC (1,706 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.