Computer Science > Social and Information Networks
[Submitted on 16 Apr 2022]
Title:DMCS : Density Modularity based Community Search
View PDFAbstract:Community Search, or finding a connected subgraph (known as a community) containing the given query nodes in a social network, is a fundamental problem. Most of the existing community search models only focus on the internal cohesiveness of a community. However, a high-quality community often has high modularity, which means dense connections inside communities and sparse connections to the nodes outside the community. In this paper, we conduct a pioneer study on searching a community with high modularity. We point out that while modularity has been popularly used in community detection (without query nodes), it has not been adopted for community search, surprisingly, and its application in community search (related to query nodes) brings in new challenges. We address these challenges by designing a new graph modularity function named Density Modularity. To the best of our knowledge, this is the first work on the community search problem using graph modularity. The community search based on the density modularity, termed as DMCS, is to find a community in a social network that contains all the query nodes and has high density-modularity. We prove that the DMCS problem is NP-hard. To efficiently address DMCS, we present new algorithms that run in log-linear time to the graph size. We conduct extensive experimental studies in real-world and synthetic networks, which offer insights into the efficiency and effectiveness of our algorithms. In particular, our algorithm achieves up to 8.5 times higher accuracy in terms of NMI than baseline algorithms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.