Computer Science > Logic in Computer Science
[Submitted on 27 Apr 2022 (v1), last revised 27 Sep 2024 (this version, v5)]
Title:Fairness and promptness in Muller formulas
View PDFAbstract:In this paper we consider two different views of the model checking problems for the Linear Temporal Logic (LTL). On the one hand, we consider the universal model checking problem for LTL, where one asks that for a given system and a given formula all the runs of the system satisfy the formula. On the other hand, the fair model checking problem for LTL asks that for a given system and a given formula almost all the runs of the system satisfy the formula. It was shown that these two problems have the same theoretical complexity i.e. PSPACE-complete. The question arises whether one can find a fragment of LTL for which the complexity of these two problems differs. One such fragment was identified in a previous work, namely the Muller fragment. We address a similar comparison for the prompt fragment of LTL (pLTL). pLTL extends LTL with an additional operator, i.e. the prompt-eventually. This operator ensures the existence of a bound such that liveness properties are satisfied within this bound. We show that the corresponding Muller fragment for pLTL does not enjoy the same algorithmic properties with respect to the comparison considered. We also identify a new expressive fragment for which the fair model checking is faster than the universal one.
Submission history
From: Youssouf Oualhadj [view email][v1] Wed, 27 Apr 2022 22:24:22 UTC (30 KB)
[v2] Tue, 16 Aug 2022 09:33:07 UTC (35 KB)
[v3] Wed, 12 Oct 2022 09:01:42 UTC (48 KB)
[v4] Wed, 17 Jul 2024 09:57:37 UTC (246 KB)
[v5] Fri, 27 Sep 2024 11:28:33 UTC (259 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.