Computer Science > Emerging Technologies
[Submitted on 28 Apr 2022]
Title:A Probabilistic Chemical Programmable Computer
View PDFAbstract:The exponential growth of the power of modern digital computers is based upon the miniaturisation of vast nanoscale arrays of electronic switches, but this will be eventually constrained by fabrication limits and power dissipation. Chemical processes have the potential to scale beyond these limits performing computations through chemical reactions, yet the lack of well-defined programmability limits their scalability and performance. We present a hybrid digitally programmable chemical array as a probabilistic computational machine that uses chemical oscillators partitioned in interconnected cells as a computational substrate. This hybrid architecture performs efficient computation by distributing between chemical and digital domains together with error correction. The efficiency is gained by combining digital with probabilistic chemical logic based on nearest neighbour interactions and hysteresis effects. We demonstrated the implementation of one- and two- dimensional Chemical Cellular Automata and solutions to combinatorial optimization problems.
Submission history
From: Leroy Cronin Prof [view email][v1] Thu, 28 Apr 2022 13:36:31 UTC (14,105 KB)
Current browse context:
cs.ET
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.