Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Apr 2022 (v1), last revised 19 Jul 2022 (this version, v2)]
Title:Reliable Label Correction is a Good Booster When Learning with Extremely Noisy Labels
View PDFAbstract:Learning with noisy labels has aroused much research interest since data annotations, especially for large-scale datasets, may be inevitably imperfect. Recent approaches resort to a semi-supervised learning problem by dividing training samples into clean and noisy sets. This paradigm, however, is prone to significant degeneration under heavy label noise, as the number of clean samples is too small for conventional methods to behave well. In this paper, we introduce a novel framework, termed as LC-Booster, to explicitly tackle learning under extreme noise. The core idea of LC-Booster is to incorporate label correction into the sample selection, so that more purified samples, through the reliable label correction, can be utilized for training, thereby alleviating the confirmation bias. Experiments show that LC-Booster advances state-of-the-art results on several noisy-label benchmarks, including CIFAR-10, CIFAR-100, Clothing1M and WebVision. Remarkably, under the extreme 90\% noise ratio, LC-Booster achieves 92.9\% and 48.4\% accuracy on CIFAR-10 and CIFAR-100, surpassing state-of-the-art methods by a large margin.
Submission history
From: Kai Wang [view email][v1] Sat, 30 Apr 2022 07:19:03 UTC (868 KB)
[v2] Tue, 19 Jul 2022 17:08:46 UTC (808 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.