Computer Science > Information Theory
[Submitted on 8 May 2022 (v1), last revised 25 Aug 2022 (this version, v2)]
Title:Codes for Constrained Periodicity
View PDFAbstract:Reliability is an inherent challenge for the emerging nonvolatile technology of racetrack memories, and there exists a fundamental relationship between codes designed for racetrack memories and codes with constrained periodicity. Previous works have sought to construct codes that avoid periodicity in windows, yet have either only provided existence proofs or required high redundancy. This paper provides the first constructions for avoiding periodicity that are both efficient (average-linear time) and with low redundancy (near the lower bound). The proposed algorithms are based on iteratively repairing windows which contain periodicity until all the windows are valid. Intuitively, such algorithms should not converge as there is no monotonic progression; yet, we prove convergence with average-linear time complexity by exploiting subtle properties of the encoder. Overall, we both provide constructions that avoid periodicity in all windows, and we also study the cardinality of such constraints.
Submission history
From: Orian Leitersdorf [view email][v1] Sun, 8 May 2022 16:32:17 UTC (257 KB)
[v2] Thu, 25 Aug 2022 22:31:20 UTC (257 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.