Mathematics > Numerical Analysis
[Submitted on 12 May 2022 (v1), last revised 9 Nov 2022 (this version, v2)]
Title:Continuous Interior Penalty stabilization for divergence-free finite element methods
View PDFAbstract:In this paper we propose, analyze, and test numerically a pressure-robust stabilized finite element for a linearized problem in incompressible fluid mechanics, namely, the steady Oseen equation with low viscosity. Stabilization terms are defined by jumps of different combinations of derivatives for the convective term over the element faces of the triangulation of the domain. With the help of these stabilizing terms, and the fact the finite element space is assumed to provide a point-wise divergence-free velocity, an $\mathcal O\big(h^{k+\frac12}\big)$ error estimate in the $L^2$-norm is proved for the method (in the convection-dominated regime), and optimal order estimates in the remaining norms of the error. Numerical results supporting the theoretical findings are provided.
Submission history
From: Ernesto Cáceres [view email][v1] Thu, 12 May 2022 21:32:08 UTC (449 KB)
[v2] Wed, 9 Nov 2022 18:59:11 UTC (439 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.