Computer Science > Emerging Technologies
[Submitted on 18 May 2022 (v1), last revised 22 Jun 2022 (this version, v2)]
Title:Single-Shot Optical Neural Network
View PDFAbstract:As deep neural networks (DNNs) grow to solve increasingly complex problems, they are becoming limited by the latency and power consumption of existing digital processors. For improved speed and energy efficiency, specialized analog optical and electronic hardware has been proposed, however, with limited scalability (input vector length $K$ of hundreds of elements). Here, we present a scalable, single-shot-per-layer analog optical processor that uses free-space optics to reconfigurably distribute an input vector and integrated optoelectronics for static, updatable weighting and the nonlinearity -- with $K \approx 1,000$ and beyond. We experimentally test classification accuracy of the MNIST handwritten digit dataset, achieving 94.7% (ground truth 96.3%) without data preprocessing or retraining on the hardware. We also determine the fundamental upper bound on throughput ($\sim$0.9 exaMAC/s), set by the maximum optical bandwidth before significant increase in error. Our combination of wide spectral and spatial bandwidths in a CMOS-compatible system enables highly efficient computing for next-generation DNNs.
Submission history
From: Liane Bernstein [view email][v1] Wed, 18 May 2022 17:49:49 UTC (1,575 KB)
[v2] Wed, 22 Jun 2022 20:12:00 UTC (1,047 KB)
Current browse context:
cs.ET
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.