Computer Science > Machine Learning
[Submitted on 25 May 2022 (v1), last revised 16 Nov 2023 (this version, v2)]
Title:Rethinking Fano's Inequality in Ensemble Learning
View PDFAbstract:We propose a fundamental theory on ensemble learning that answers the central question: what factors make an ensemble system good or bad? Previous studies used a variant of Fano's inequality of information theory and derived a lower bound of the classification error rate on the basis of the $\textit{accuracy}$ and $\textit{diversity}$ of models. We revisit the original Fano's inequality and argue that the studies did not take into account the information lost when multiple model predictions are combined into a final prediction. To address this issue, we generalize the previous theory to incorporate the information loss, which we name $\textit{combination loss}$. Further, we empirically validate and demonstrate the proposed theory through extensive experiments on actual systems. The theory reveals the strengths and weaknesses of systems on each metric, which will push the theoretical understanding of ensemble learning and give us insights into designing systems.
Submission history
From: Terufumi Morishita [view email][v1] Wed, 25 May 2022 11:44:13 UTC (820 KB)
[v2] Thu, 16 Nov 2023 09:43:51 UTC (803 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.