Computer Science > Data Structures and Algorithms
[Submitted on 30 May 2022 (v1), last revised 16 Jun 2024 (this version, v2)]
Title:Daisy Bloom Filters
View PDF HTML (experimental)Abstract:A filter is a widely used data structure for storing an approximation of a given set $S$ of elements from some universe $U$ (a countable set).It represents a superset $S'\supseteq S$ that is ''close to $S$'' in the sense that for $x\not\in S$, the probability that $x\in S'$ is bounded by some $\varepsilon > 0$. The advantage of using a Bloom filter, when some false positives are acceptable, is that the space usage becomes smaller than what is required to store $S$ exactly.
Though filters are well-understood from a worst-case perspective, it is clear that state-of-the-art constructions may not be close to optimal for particular distributions of data and queries. Suppose, for instance, that some elements are in $S$ with probability close to 1. Then it would make sense to always include them in $S'$, saving space by not having to represent these elements in the filter. Questions like this have been raised in the context of Weighted Bloom filters (Bruck, Gao and Jiang, ISIT 2006) and Bloom filter implementations that make use of access to learned components (Vaidya, Knorr, Mitzenmacher, and Krask, ICLR 2021).
In this paper, we present a lower bound for the expected space that such a filter requires. We also show that the lower bound is asymptotically tight by exhibiting a filter construction that executes queries and insertions in worst-case constant time, and has a false positive rate at most $\varepsilon $ with high probability over input sets drawn from a product distribution. We also present a Bloom filter alternative, which we call the $\textit{Daisy Bloom filter}$, that executes operations faster and uses significantly less space than the standard Bloom filter.
Submission history
From: Ioana O. Bercea [view email][v1] Mon, 30 May 2022 07:22:24 UTC (80 KB)
[v2] Sun, 16 Jun 2024 15:29:00 UTC (297 KB)
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.