Computer Science > Machine Learning
[Submitted on 8 Jun 2022 (v1), last revised 11 Apr 2023 (this version, v2)]
Title:Neural Collapse: A Review on Modelling Principles and Generalization
View PDFAbstract:Deep classifier neural networks enter the terminal phase of training (TPT) when training error reaches zero and tend to exhibit intriguing Neural Collapse (NC) properties. Neural collapse essentially represents a state at which the within-class variability of final hidden layer outputs is infinitesimally small and their class means form a simplex equiangular tight frame. This simplifies the last layer behaviour to that of a nearest-class center decision rule. Despite the simplicity of this state, the dynamics and implications of reaching it are yet to be fully understood. In this work, we review the principles which aid in modelling neural collapse, followed by the implications of this state on generalization and transfer learning capabilities of neural networks. Finally, we conclude by discussing potential avenues and directions for future research.
Submission history
From: Vignesh Kothapalli [view email][v1] Wed, 8 Jun 2022 17:55:28 UTC (2,782 KB)
[v2] Tue, 11 Apr 2023 06:11:14 UTC (3,542 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.