Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Jun 2022 (v1), last revised 2 Mar 2023 (this version, v3)]
Title:The Modality Focusing Hypothesis: Towards Understanding Crossmodal Knowledge Distillation
View PDFAbstract:Crossmodal knowledge distillation (KD) extends traditional knowledge distillation to the area of multimodal learning and demonstrates great success in various applications. To achieve knowledge transfer across modalities, a pretrained network from one modality is adopted as the teacher to provide supervision signals to a student network learning from another modality. In contrast to the empirical success reported in prior works, the working mechanism of crossmodal KD remains a mystery. In this paper, we present a thorough understanding of crossmodal KD. We begin with two case studies and demonstrate that KD is not a universal cure in crossmodal knowledge transfer. We then present the modality Venn diagram to understand modality relationships and the modality focusing hypothesis revealing the decisive factor in the efficacy of crossmodal KD. Experimental results on 6 multimodal datasets help justify our hypothesis, diagnose failure cases, and point directions to improve crossmodal knowledge transfer in the future.
Submission history
From: Zihui Xue [view email][v1] Mon, 13 Jun 2022 21:34:21 UTC (3,039 KB)
[v2] Fri, 30 Sep 2022 16:43:43 UTC (2,431 KB)
[v3] Thu, 2 Mar 2023 01:12:05 UTC (2,627 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.