Computer Science > Social and Information Networks
[Submitted on 15 Jun 2022]
Title:A Fast Heuristic for Computing Geodesic Cores in Large Networks
View PDFAbstract:Motivated by the increasing interest in applications of graph geodesic convexity in machine learning and data mining, we present a heuristic for computing the geodesic convex hull of node sets in networks. It generates a set of almost maximal outerplanar spanning subgraphs for the input graph, computes the geodesic closure in each of these graphs, and regards a node as an element of the convex hull if it belongs to the closed sets for at least a user specified number of outerplanar graphs. Our heuristic algorithm runs in time linear in the number of edges of the input graph, i.e., it is faster with one order of magnitude than the standard algorithm computing the closure exactly. Its performance is evaluated empirically by approximating convexity based core-periphery decomposition of networks. Our experimental results with large real-world networks show that for most networks, the proposed heuristic was able to produce close approximations significantly faster than the standard algorithm computing the exact convex hulls. For example, while our algorithm calculated an approximate core-periphery decomposition in 5 hours or less for networks with more than 20 million edges, the standard algorithm did not terminate within 50 days.
Submission history
From: Florian Seiffarth [view email][v1] Wed, 15 Jun 2022 08:01:34 UTC (3,444 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.