Computer Science > Machine Learning
[Submitted on 18 Jun 2022 (v1), last revised 4 May 2023 (this version, v2)]
Title:Secure Embedding Aggregation for Federated Representation Learning
View PDFAbstract:We consider a federated representation learning framework, where with the assistance of a central server, a group of $N$ distributed clients train collaboratively over their private data, for the representations (or embeddings) of a set of entities (e.g., users in a social network). Under this framework, for the key step of aggregating local embeddings trained privately at the clients, we develop a secure embedding aggregation protocol named \scheme, which leverages all potential aggregation opportunities among all the clients, while providing privacy guarantees for the set of local entities and corresponding embeddings \emph{simultaneously} at each client, against a curious server and up to $T < N/2$ colluding clients.
Submission history
From: Jiaxiang Tang [view email][v1] Sat, 18 Jun 2022 03:09:44 UTC (1,670 KB)
[v2] Thu, 4 May 2023 05:45:34 UTC (39 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.