Computer Science > Machine Learning
[Submitted on 23 Jun 2022]
Title:Reinforcement Learning under Partial Observability Guided by Learned Environment Models
View PDFAbstract:In practical applications, we can rarely assume full observability of a system's environment, despite such knowledge being important for determining a reactive control system's precise interaction with its environment. Therefore, we propose an approach for reinforcement learning (RL) in partially observable environments. While assuming that the environment behaves like a partially observable Markov decision process with known discrete actions, we assume no knowledge about its structure or transition probabilities.
Our approach combines Q-learning with IoAlergia, a method for learning Markov decision processes (MDP). By learning MDP models of the environment from episodes of the RL agent, we enable RL in partially observable domains without explicit, additional memory to track previous interactions for dealing with ambiguities stemming from partial observability. We instead provide RL with additional observations in the form of abstract environment states by simulating new experiences on learned environment models to track the explored states. In our evaluation, we report on the validity of our approach and its promising performance in comparison to six state-of-the-art deep RL techniques with recurrent neural networks and fixed memory.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.