Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Jun 2022 (v1), last revised 16 Jan 2023 (this version, v2)]
Title:Defending Backdoor Attacks on Vision Transformer via Patch Processing
View PDFAbstract:Vision Transformers (ViTs) have a radically different architecture with significantly less inductive bias than Convolutional Neural Networks. Along with the improvement in performance, security and robustness of ViTs are also of great importance to study. In contrast to many recent works that exploit the robustness of ViTs against adversarial examples, this paper investigates a representative causative attack, i.e., backdoor. We first examine the vulnerability of ViTs against various backdoor attacks and find that ViTs are also quite vulnerable to existing attacks. However, we observe that the clean-data accuracy and backdoor attack success rate of ViTs respond distinctively to patch transformations before the positional encoding. Then, based on this finding, we propose an effective method for ViTs to defend both patch-based and blending-based trigger backdoor attacks via patch processing. The performances are evaluated on several benchmark datasets, including CIFAR10, GTSRB, and TinyImageNet, which show the proposed novel defense is very successful in mitigating backdoor attacks for ViTs. To the best of our knowledge, this paper presents the first defensive strategy that utilizes a unique characteristic of ViTs against backdoor attacks.
The paper will appear in the Proceedings of the AAAI'23 Conference. This work was initially submitted in November 2021 to CVPR'22, then it was re-submitted to ECCV'22. The paper was made public in June 2022. The authors sincerely thank all the referees from the Program Committees of CVPR'22, ECCV'22, and AAAI'23.
Submission history
From: Ping Li [view email][v1] Fri, 24 Jun 2022 17:29:47 UTC (3,242 KB)
[v2] Mon, 16 Jan 2023 11:53:42 UTC (3,242 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.