Computer Science > Logic in Computer Science
[Submitted on 20 Jul 2022]
Title:Auto-active Verification of Graph Algorithms, Written in OCaml
View PDFAbstract:Functional programming offers the perfect ground for building correct-by-construction software. Languages of such paradigm normally feature state-of-the-art type systems, good abstraction mechanisms, and well-defined execution models. We claim that all of these make software written in a functional language excellent targets for formal certification. Yet, somehow surprising, techniques such as deductive verification have been seldom applied to large-scale programs, written in mainstream functional languages. In this paper, we wish to address this situation and present the auto-active proof of realistic OCaml implementations. We choose implementations issued from the OCamlgraph library as our target, since this is both a large-scale and widely-used piece of OCaml code. We use Cameleer, a recently proposed tool for the deductive verification of OCaml programs, to conduct the proofs of the selected case studies. The vast majority of such proofs are completed fully-automatically, using SMT solvers, and when needed we can apply lightweight interactive proof inside the Why3 IDE (Cameleer translates an input program into an equivalent WhyML one, the language of the Why3 verification framework). To the best of our knowledge, these are the first mechanized, mostly-automated proofs of graph algorithms written in OCaml.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.