Computer Science > Data Structures and Algorithms
[Submitted on 25 Jul 2022 (v1), last revised 9 Jun 2023 (this version, v2)]
Title:Improved Bounds for Sampling Solutions of Random CNF Formulas
View PDFAbstract:Let $\Phi$ be a random $k$-CNF formula on $n$ variables and $m$ clauses, where each clause is a disjunction of $k$ literals chosen independently and uniformly. Our goal is to sample an approximately uniform solution of $\Phi$ (or equivalently, approximate the partition function of $\Phi$).
Let $\alpha=m/n$ be the density. The previous best algorithm runs in time $n^{\mathsf{poly}(k,\alpha)}$ for any $\alpha\lesssim2^{k/300}$ [Galanis, Goldberg, Guo, and Yang, SIAM J. Comput.'21]. Our result significantly improves both bounds by providing an almost-linear time sampler for any $\alpha\lesssim2^{k/3}$.
The density $\alpha$ captures the \emph{average degree} in the random formula. In the worst-case model with bounded \emph{maximum degree}, current best efficient sampler works up to degree bound $2^{k/5}$ [He, Wang, and Yin, FOCS'22 and SODA'23], which is, for the first time, superseded by its average-case counterpart due to our $2^{k/3}$ bound. Our result is the first progress towards establishing the intuition that the solvability of the average-case model (random $k$-CNF formula with bounded average degree) is better than the worst-case model (standard $k$-CNF formula with bounded maximal degree) in terms of sampling solutions.
Submission history
From: Kewen Wu [view email][v1] Mon, 25 Jul 2022 03:40:48 UTC (36 KB)
[v2] Fri, 9 Jun 2023 04:19:04 UTC (53 KB)
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.