Computer Science > Discrete Mathematics
[Submitted on 6 Aug 2022 (v1), last revised 13 May 2024 (this version, v2)]
Title:Expanded-clique graphs and the domination problem
View PDFAbstract:Given a graph $G$ such that each vertex $v_i$ has a value $f(v_i)$, the expanded-clique graph $H$ is the graph where each vertex $v_i$ of $G$ becomes a clique $V_i$ of size $f(v_i)$ and for each edge $v_iv_j \in E(G)$, there is a vertex of $V_i$ adjacent to an exclusive vertex of $V_j$. In this work, among the results, we present two characterizations of the expanded-clique graphs, one of them leads to a linear-time recognition algorithm. Regarding the domination number, we show that this problem is \NP-complete for planar bipartite $3$-expanded-clique graphs and for cubic line graphs of bipartite graphs.
Submission history
From: Mitre Dourado [view email][v1] Sat, 6 Aug 2022 00:15:53 UTC (921 KB)
[v2] Mon, 13 May 2024 21:45:57 UTC (18 KB)
Current browse context:
cs.DM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.