Computer Science > Sound
[Submitted on 11 Aug 2022 (v1), last revised 29 Oct 2022 (this version, v3)]
Title:Symbolic Music Loop Generation with Neural Discrete Representations
View PDFAbstract:Since most of music has repetitive structures from motifs to phrases, repeating musical ideas can be a basic operation for music composition. The basic block that we focus on is conceptualized as loops which are essential ingredients of music. Furthermore, meaningful note patterns can be formed in a finite space, so it is sufficient to represent them with combinations of discrete symbols as done in other domains. In this work, we propose symbolic music loop generation via learning discrete representations. We first extract loops from MIDI datasets using a loop detector and then learn an autoregressive model trained by discrete latent codes of the extracted loops. We show that our model outperforms well-known music generative models in terms of both fidelity and diversity, evaluating on random space. Our code and supplementary materials are available at this https URL.
Submission history
From: Sangjun Han [view email][v1] Thu, 11 Aug 2022 02:00:36 UTC (847 KB)
[v2] Mon, 5 Sep 2022 04:53:49 UTC (847 KB)
[v3] Sat, 29 Oct 2022 16:26:48 UTC (816 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.