Computer Science > Robotics
[Submitted on 1 Aug 2022 (v1), last revised 21 Nov 2022 (this version, v2)]
Title:A Simulation Study of Passing Drivers' Responses to the Autonomous Truck-Mounted Attenuator System in Road Maintenance
View PDFAbstract:The Autonomous Truck-Mounted Attenuator (ATMA) system is a lead-follower vehicle system based on autonomous driving and connected vehicle technologies. The lead truck performs maintenance tasks on the road, and the unmanned follower truck alerts passing vehicles about the moving work zone and protects workers and the equipment. While the ATMA has been under testing by transportation maintenance and operations agencies recently, a simulator-based testing capability is a supplement, especially if human subjects are involved. This paper aims to discover how passing drivers perceive, understand, and react to the ATMA system in road maintenance. With the driving simulator developed for this ATMA study, the paper performed a simulation study wherein a screen-based eye tracker collected sixteen subjects' gaze points and pupil diameters. Data analysis evidenced the change in subjects' visual attention patterns while passing the ATMA. On average, the ATMA starts to attract subjects' attention from 500 ft behind the follower truck. Most (87.50%) understood the follower truck's protection purpose, and many (60%) reasoned the association between the two trucks. Nevertheless, nearly half of the participants (43.75%) did not recognize that ATMA is a connected autonomous vehicle system. While all subjects safely changed lanes and attempted to pass the slow-moving ATMA, their inadequate understanding of the ATMA is a potential risk, like cutting into the ATAM. Results implied that transportation maintenance and operations agencies should consider this in establishing the deployment guidance.
Submission history
From: Yu Li [view email][v1] Mon, 1 Aug 2022 15:00:38 UTC (13,341 KB)
[v2] Mon, 21 Nov 2022 18:49:35 UTC (19,827 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.