Computer Science > Machine Learning
[Submitted on 17 Aug 2022 (v1), last revised 30 Nov 2022 (this version, v2)]
Title:Prediction of Oral Food Challenge Outcomes via Ensemble Learning
View PDFAbstract:Oral Food Challenges (OFCs) are essential to accurately diagnosing food allergy due to the limitations of existing clinical testing. However, some patients are hesitant to undergo OFCs, while those willing suffer from limited access to allergists in rural/community healthcare settings. Despite its success in predicting patient outcomes in other clinical settings, few applications of machine learning to food allergy have been developed. Thus, in this study, we seek to leverage machine learning methodologies for OFC outcome prediction. Retrospective data was gathered from 1,112 patients who collectively underwent a total of 1,284 OFCs, and consisted of clinical factors including serum-specific Immunoglobulin E (IgE), total IgE, skin prick tests (SPTs), comorbidities, sex, and age. Using these features, multiple machine learning models were constructed to predict OFC outcomes for three common allergens: peanut, egg, and milk. The best performing model for each allergen was an ensemble of random forest (egg) or Learning Using Concave and Convex Kernels (LUCCK) (peanut, milk) models, which achieved an Area under the Curve (AUC) of 0.91, 0.96, and 0.94, in predicting OFC outcomes for peanut, egg, and milk, respectively. Moreover, all such models had sensitivity and specificity values 89%. Model interpretation via SHapley Additive exPlanations (SHAP) indicates that specific IgE, along with wheal and flare values from SPTs, are highly predictive of OFC outcomes. The results of this analysis suggest that ensemble learning has the potential to predict OFC outcomes and reveal relevant clinical factors for further study.
Submission history
From: Jonathan Gryak [view email][v1] Wed, 17 Aug 2022 12:56:37 UTC (1,148 KB)
[v2] Wed, 30 Nov 2022 14:08:06 UTC (4,551 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.