Computer Science > Information Theory
[Submitted on 25 Aug 2022]
Title:Multi-Hop Beam Routing for Hybrid Active/Passive IRS Aided Wireless Communications
View PDFAbstract:Prior studies on intelligent reflecting surface (IRS) have mostly considered wireless communication systems aided by a single passive IRS, which, however, has limited control over wireless propagation environment and suffers from product-distance path-loss. To address these issues, we propose in this paper a new hybrid active/passive IRS aided wireless communication system, where an active IRS and multiple passive IRSs are deployed to assist the communication between a base station (BS) and a remote user in complex environment, by establishing a multihop reflection path across active/passive IRSs. In particular, the active IRS enables signal reflection with power amplification, thus effectively compensating the severe path-loss in the multi-reflection path. To maximize the achievable rate at the user, we first design the optimal beamforming of the BS and selected (active/passive) IRSs for a given multi-reflection path, and then propose an efficient algorithm to obtain the optimal multi-reflection path by using the path decomposition method and graph theory. We show that the active IRS should be selected to establish the beam routing path when its amplification power and/or number of active reflecting elements are sufficiently large. Last, numerical results demonstrate the effectiveness of the proposed hybrid active/passive IRS beam routing design as compared to the benchmark scheme with passive IRSs only.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.