Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Aug 2022]
Title:A Federated Learning-enabled Smart Street Light Monitoring Application: Benefits and Future Challenges
View PDFAbstract:Data-enabled cities are recently accelerated and enhanced with automated learning for improved Smart Cities applications. In the context of an Internet of Things (IoT) ecosystem, the data communication is frequently costly, inefficient, not scalable and lacks security. Federated Learning (FL) plays a pivotal role in providing privacy-preserving and communication efficient Machine Learning (ML) frameworks. In this paper we evaluate the feasibility of FL in the context of a Smart Cities Street Light Monitoring application. FL is evaluated against benchmarks of centralised and (fully) personalised machine learning techniques for the classification task of the lampposts operation. Incorporating FL in such a scenario shows minimal performance reduction in terms of the classification task, but huge improvements in the communication cost and the privacy preserving. These outcomes strengthen FL's viability and potential for IoT applications.
Submission history
From: Ioannis Mavromatis Dr [view email][v1] Sat, 27 Aug 2022 12:26:25 UTC (2,707 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.