Electrical Engineering and Systems Science > Systems and Control
[Submitted on 28 Aug 2022]
Title:Structural Adaptivity of Directed Networks
View PDFAbstract:Network structure plays a critical role in functionality and performance of network systems. This paper examines structural adaptivity of diffusively coupled, directed multi-agent networks that are subject to diffusion performance. Inspired by the observation that the link redundancy in a network may degrade its diffusion performance, a distributed data-driven neighbor selection framework is proposed to adaptively adjust the network structure for improving the diffusion performance of exogenous influence over the network. Specifically, each agent is allowed to interact with only a specific subset of neighbors while global reachability from exogenous influence to all agents of the network is maintained. Both continuous-time and discrete-time directed networks are examined. For each of the two cases, we first examine the reachability properties encoded in the eigenvectors of perturbed variants of graph Laplacian or SIA matrix associated with directed networks, respectively. Then, an eigenvector-based rule for neighbor selection is proposed to derive a reduced network, on which the diffusion performance is enhanced. Finally, motivated by the necessity of distributed and data-driven implementation of the neighbor selection rule, quantitative connections between eigenvectors of the perturbed graph Laplacian and SIA matrix and relative rate of change in agent state are established, respectively. These connections immediately enable a data-driven inference of the reduced neighbor set for each agent using only locally accessible data. As an immediate extension, we further discuss the distributed data-driven construction of directed spanning trees of directed networks using the proposed neighbor selection framework. Numerical simulations are provided to demonstrate the theoretical results.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.