Computer Science > Databases
[Submitted on 31 Aug 2022]
Title:Ant Colony Optimization for Mining Gradual Patterns
View PDFAbstract:Gradual pattern extraction is a field in (KDD) Knowledge Discovery in Databases that maps correlations between attributes of a data set as gradual dependencies. A gradual dependency may take a form of "the more Attribute K , the less Attribute L". In this paper, we propose an ant colony optimization technique that uses a probabilistic approach to learn and extract frequent gradual patterns. Through computational experiments on real-world data sets, we compared the performance of our ant-based algorithm to an existing gradual item set extraction algorithm and we found out that our algorithm outperforms the later especially when dealing with large data sets.
Submission history
From: Dickson Owuor Dr. [view email][v1] Wed, 31 Aug 2022 12:22:57 UTC (2,115 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.