Electrical Engineering and Systems Science > Systems and Control
[Submitted on 7 Sep 2022 (v1), last revised 15 Jan 2023 (this version, v2)]
Title:A Predictive Chance Constraint Rebalancing Approach to Mobility-on-Demand Services
View PDFAbstract:This paper considers the problem of supply-demand imbalances in Mobility-on-Demand (MoD) services, such as Uber or DiDi Rider. Such imbalances are due to uneven stochastic travel demand and can be prevented by proactively rebalance empty vehicles. To this end we propose a method that include estimated stochastic travel demand patterns into stochastic model predictive control (SMPC) for rebalancing of empty vehicles MoD ride-hailing service. More precisely, we first estimate passenger travel demand using Gaussian Process Regression (GPR), which provides demand uncertainty bounds for time pattern prediction. We then formulate a SMPC for the autonomous ride-hailing service and integrate demand predictions with uncertainty bounds into a receding horizon MoD optimization. In order to guarantee constraint satisfaction in the above optimization under estimated stochastic demand prediction, we employ a probabilistic constraining method with user defined confidence interval. Receding horizon MoD optimization with probabilistic constraints thereby calls for Chance Constrained Model Predictive Control (CCMPC). The benefits of the proposed method are twofold. First, travel demand uncertainty prediction from data can naturally be embedded into the MoD optimization framework. We show that for a given minimal fleet size the imbalance in each station can be kept below a certain threshold with a user defined probability. Second, CCMPC can further be relaxed into a Mixed-Integer-LP (MILP) and we show that the MILP can be solved as a corresponding Linear-Program which always admits a integral solution. Finally, we demonstrate through high-fidelity transportation simulations, that by tuning the confidence bound on the chance constraint close to optimal oracle performance can be achieved. The corresponding median customer wait time is reduced by 4% compared to using only the mean prediction of the GPR.
Submission history
From: Sten Elling Tingstad Jacobsen [view email][v1] Wed, 7 Sep 2022 15:17:31 UTC (2,910 KB)
[v2] Sun, 15 Jan 2023 19:17:53 UTC (3,057 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.