Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Sep 2022]
Title:MiNL: Micro-images based Neural Representation for Light Fields
View PDFAbstract:Traditional representations for light fields can be separated into two types: explicit representation and implicit representation. Unlike explicit representation that represents light fields as Sub-Aperture Images (SAIs) based arrays or Micro-Images (MIs) based lenslet images, implicit representation treats light fields as neural networks, which is inherently a continuous representation in contrast to discrete explicit representation. However, at present almost all the implicit representations for light fields utilize SAIs to train an MLP to learn a pixel-wise mapping from 4D spatial-angular coordinate to pixel colors, which is neither compact nor of low complexity. Instead, in this paper we propose MiNL, a novel MI-wise implicit neural representation for light fields that train an MLP + CNN to learn a mapping from 2D MI coordinates to MI colors. Given the micro-image's coordinate, MiNL outputs the corresponding micro-image's RGB values. Light field encoding in MiNL is just training a neural network to regress the micro-images and the decoding process is a simple feedforward operation. Compared with common pixel-wise implicit representation, MiNL is more compact and efficient that has faster decoding speed (\textbf{$\times$80$\sim$180} speed-up) as well as better visual quality (\textbf{1$\sim$4dB} PSNR improvement on average).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.