Computer Science > Machine Learning
[Submitted on 29 Sep 2022]
Title:Batch Normalization Explained
View PDFAbstract:A critically important, ubiquitous, and yet poorly understood ingredient in modern deep networks (DNs) is batch normalization (BN), which centers and normalizes the feature maps. To date, only limited progress has been made understanding why BN boosts DN learning and inference performance; work has focused exclusively on showing that BN smooths a DN's loss landscape. In this paper, we study BN theoretically from the perspective of function approximation; we exploit the fact that most of today's state-of-the-art DNs are continuous piecewise affine (CPA) splines that fit a predictor to the training data via affine mappings defined over a partition of the input space (the so-called "linear regions"). {\em We demonstrate that BN is an unsupervised learning technique that -- independent of the DN's weights or gradient-based learning -- adapts the geometry of a DN's spline partition to match the data.} BN provides a "smart initialization" that boosts the performance of DN learning, because it adapts even a DN initialized with random weights to align its spline partition with the data. We also show that the variation of BN statistics between mini-batches introduces a dropout-like random perturbation to the partition boundaries and hence the decision boundary for classification problems. This per mini-batch perturbation reduces overfitting and improves generalization by increasing the margin between the training samples and the decision boundary.
Submission history
From: Randall Balestriero [view email][v1] Thu, 29 Sep 2022 13:41:27 UTC (10,748 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.