Computer Science > Machine Learning
[Submitted on 11 Oct 2022]
Title:Class-Specific Explainability for Deep Time Series Classifiers
View PDFAbstract:Explainability helps users trust deep learning solutions for time series classification. However, existing explainability methods for multi-class time series classifiers focus on one class at a time, ignoring relationships between the classes. Instead, when a classifier is choosing between many classes, an effective explanation must show what sets the chosen class apart from the rest. We now formalize this notion, studying the open problem of class-specific explainability for deep time series classifiers, a challenging and impactful problem setting. We design a novel explainability method, DEMUX, which learns saliency maps for explaining deep multi-class time series classifiers by adaptively ensuring that its explanation spotlights the regions in an input time series that a model uses specifically to its predicted class. DEMUX adopts a gradient-based approach composed of three interdependent modules that combine to generate consistent, class-specific saliency maps that remain faithful to the classifier's behavior yet are easily understood by end users. Our experimental study demonstrates that DEMUX outperforms nine state-of-the-art alternatives on five popular datasets when explaining two types of deep time series classifiers. Further, through a case study, we demonstrate that DEMUX's explanations indeed highlight what separates the predicted class from the others in the eyes of the classifier. Our code is publicly available at this https URL.
Submission history
From: Ramesh Doddaiah [view email][v1] Tue, 11 Oct 2022 12:37:15 UTC (30,438 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.