Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 12 Oct 2022]
Title:Testing afterglow models of FRB 200428 with early post-burst observations of SGR 1935+2154
View PDFAbstract:We present LOFAR imaging observations from the April/May 2020 active episode of magnetar SGR 1935+2154. We place the earliest radio limits on persistent emission following the low-luminosity fast radio burst FRB 200428 from the magnetar. We also perform an image-plane search for transient emission and find no radio flares during our observations. We examine post-FRB radio upper limits in the literature and find that all are consistent with the multi-wavelength afterglow predicted by the synchrotron maser shock model interpretation of FRB 200428. However, early optical observations appear to rule out the simple versions of the afterglow model with constant-density circumburst media. We show that these constraints may be mitigated by adapting the model for a wind-like environment, but only for a limited parameter range. In addition, we suggest that late-time non-thermal particle acceleration occurs within the afterglow model when the shock is no longer relativistic, which may prove vital for detecting afterglows from other Galactic FRBs. We also discuss future observing strategies for verifying either magnetospheric or maser shock FRB models via rapid radio observations of Galactic magnetars and nearby FRBs.
Submission history
From: Alexander Cooper [view email][v1] Wed, 12 Oct 2022 19:27:57 UTC (2,076 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.