Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Oct 2022]
Title:Lightweight Alpha Matting Network Using Distillation-Based Channel Pruning
View PDFAbstract:Recently, alpha matting has received a lot of attention because of its usefulness in mobile applications such as selfies. Therefore, there has been a demand for a lightweight alpha matting model due to the limited computational resources of commercial portable devices. To this end, we suggest a distillation-based channel pruning method for the alpha matting networks. In the pruning step, we remove channels of a student network having fewer impacts on mimicking the knowledge of a teacher network. Then, the pruned lightweight student network is trained by the same distillation loss. A lightweight alpha matting model from the proposed method outperforms existing lightweight methods. To show superiority of our algorithm, we provide various quantitative and qualitative experiments with in-depth analyses. Furthermore, we demonstrate the versatility of the proposed distillation-based channel pruning method by applying it to semantic segmentation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.