Computer Science > Computation and Language
[Submitted on 26 Oct 2022]
Title:ProSiT! Latent Variable Discovery with PROgressive SImilarity Thresholds
View PDFAbstract:The most common ways to explore latent document dimensions are topic models and clustering methods. However, topic models have several drawbacks: e.g., they require us to choose the number of latent dimensions a priori, and the results are stochastic. Most clustering methods have the same issues and lack flexibility in various ways, such as not accounting for the influence of different topics on single documents, forcing word-descriptors to belong to a single topic (hard-clustering) or necessarily relying on word representations. We propose PROgressive SImilarity Thresholds - ProSiT, a deterministic and interpretable method, agnostic to the input format, that finds the optimal number of latent dimensions and only has two hyper-parameters, which can be set efficiently via grid search. We compare this method with a wide range of topic models and clustering methods on four benchmark data sets. In most setting, ProSiT matches or outperforms the other methods in terms six metrics of topic coherence and distinctiveness, producing replicable, deterministic results.
Submission history
From: Tommaso Fornaciari [view email][v1] Wed, 26 Oct 2022 14:52:44 UTC (2,861 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.